s

SENTIMENT ANALYSIS OF INDRIVE APP USAGE REVIEWS ON GOOGLE PLAYSTORE USING SUPPORT VECTOR MACHINE (SVM) AND NAÏVE BAYES ALGORITHM

Authors
  • Afifani Aulida Romadhoni

    Muhammadiyah University of Sidoarjo, Indonesia
  • Andry Rachmadany

    Muhammadiyah University of Sidoarjo, Indonesia
  • Bayu Hari Prasojo

    Muhammadiyah University of Sidoarjo, Indonesia
Keywords:
Sentiment analysis , InDrive, Google playstore, Support vector machine, Naïve bayes
Abstract

Objective: This study aims to analyze user sentiment toward the InDrive application on Google Play Store by employing Support Vector Machine (SVM) and Naïve Bayes algorithms, motivated by the increasing number of user reviews that are difficult to evaluate manually, thus requiring a text mining approach to efficiently classify opinions into positive and negative categories. Method: A dataset of 30,000 reviews was collected through web scraping, and the analysis involved several stages, including preprocessing (cleaning, case folding, normalization, tokenizing, stopword removal, and stemming), term weighting using TF-IDF, and classification using SVM and Naïve Bayes. Results: The results revealed that SVM outperformed Naïve Bayes with an accuracy of 78%, precision of 0.80, and recall of 0.74, whereas Naïve Bayes achieved 76% accuracy, 0.79 precision, and 0.70 recall, indicating that SVM is more effective in handling complex user review data compared to Naïve Bayes. Novelty: The novelty of this research lies in applying a comparative study of the two algorithms to InDrive application reviews, which has not been extensively explored, and is expected to provide insights for developers to better understand user perceptions and improve the quality of application services.

References

G. M. Hakim, “Analisis Faktor Yang Mempengaruhi Minat Penggunaan Aplikasi Indrive Menggunakan Model Utaut2,” Intecoms J. Inf. Technol. Comput. Sci., Vol. 6, No. 1, Pp. 353–362, 2023, Doi: 10.31539/Intecoms.V6i1.5974.

Ani Linta Sari, Ardhia Pramesty Regita Cahyani, And Yolanda Naomi Martdina, “Peran Teknologi Terhadap Transformasi Sosial Dari Ojek Konvensional Ke Ojek Online,” Tuturan J. Ilmu Komunikasi, Sos. Dan Hum., Vol. 2, No. 3, Pp. 160–171, 2024, Doi: 10.47861/Tuturan.V2i3.1080.

K. Shafitri And V. Sofica, “Analisis Usability Aplikasi Transportasi Online Dengan Metode Use Questionnaire Dan Usability Testing,” Informatics Educ. Prof. J. Informatics, Vol. 8, No. 2, P. 134, 2023, Doi: 10.51211/Itbi.V8i2.2534.

F. H. Jaya, D. N. Afni, And A. Murtadahari, “Preferensi Penggunaan Transportasi Online Berbasis Mobilitas Dan Kinerja Di Bandar Lampung ( Studi Kasus : Perbandingan Aplikasi Online Gojek , Maxim Dan In Drive ) Mobility And Performance-Based Online Transportation Use Preferences In Bandar Lampung ( C,” Vol. 10, 2025.

N. Pitalia And Respitawulan, “Pemilihan Aplikasi Ojek Online Dengan Preference Selection Index Dan Simple Additive Weighting,” J. Ris. Mat., Pp. 121–130, 2023, Doi: 10.29313/Jrm.V3i2.2831.

A. R. Indriani, N. R. Oktadini, F. I. Komputer, And U. Sriwijaya, “Analisis Faktor Yang Mempengaruhi Niat Perilaku Pengguna,” Vol. 8, No. 2, Pp. 272–284, 2024.

J. Joosten, F. Halim, D. Evawani Sihombing, And Y. Lamtumiar Hutahaean, “Penerapan Metode Mecue 2.0 Dalam Mengukur Pengalaman Pengguna Pada Aplikasi ”Indriver”,” Jitsi J. Ilm. Teknol. Sist. Inf., Vol. 4, No. 2, Pp. 58–63, 2023, Doi: 10.30630/Jitsi.4.2.133.

S. Lai, X. Hu, H. Xu, Z. Ren, And Z. Liu, “Multimodal Sentiment Analysis: A Survey,” Displays, Vol. 80, 2023, Doi: 10.1016/J.Displa.2023.102563.

A. N. Hasanah And B. N. Sari, “Analisis Sentimen Ulasan Pengguna Aplikasi Jasa Ojek Online Maxim Pada Google Play Dengan Metode Naïve Bayes Classifier,” J. Inform. Dan Tek. Elektro Terap., Vol. 12, No. 1, Pp. 90–96, 2024, Doi: 10.23960/Jitet.V12i1.3628.

B. Liu, “Book Review,” Sentim. Anal. Min. Opin. Sentim. Emot., Vol. 42, No. 3, Pp. 596–598, 2015, Doi: 10.1162/Coli.

J. J. A. Limbong, I. Sembiring, K. D. Hartomo, U. Kristen, S. Wacana, And P. Korespondensi, “Analisis Klasifikasi Sentimen Ulasan Pada E-Commerce Shopee Berbasis Word Cloud Dengan Metode Naive Bayes Dan K-Nearest Analysis Of Review Sentiment Classification On E-Commerce Shopee Word Cloud Based With Naïve Bayes And K-Nearest Neighbor Methods,” Vol. 9, No. 2, Pp. 347–356, 2022, Doi: 10.25126/Jtiik.202294960.

“Analisis Sentimen Ulasan Pengguna Aplikasi Pada Google Play Store Menggunakan Algoritma Support Vector Machine,” Vol. 11, No. 2, 2023.

D. Safryda Putri And T. Ridwan, “Analisis Sentimen Ulasan Aplikasi Pospay Dengan Algoritma Support Vector Machine,” J. Ilm. Inform., Vol. 11, No. 01, Pp. 32–40, 2023, Doi: 10.33884/Jif.V11i01.6611.

B. Liu, “Sentiment Analysis And Opinion Mining,” 2012.

S. Kaur, Ramandeep Kautish, “Sentiment Analysis- From Theory To Practice,” 2021.

M. S. Arrafiq And R. Kurniawan, “Analisis Sentimen Pengguna Terhadap Layanan Aplikasi Seabank Indonesia Di Instagram Menggunakan Metode Support Vector Machine,” J. Inf. Syst. …, Vol. 5, No. 4, Pp. 1280–1291, 2024, Doi: 10.47065/Josh.V5i4.5620.

M. Information, “Sentiment Analysis”.

Y. Mao, Q. Liu, And Y. Zhang, “Sentiment Analysis Methods, Applications, And Challenges: A Systematic Literature Review,” J. King Saud Univ. - Comput. Inf. Sci., Vol. 36, No. 4, P. 102048, 2024, Doi: 10.1016/J.Jksuci.2024.102048.

M. M. M. Lamba, “Sentiment Analysis,” Pp. 191–211, 2022.

T. Tukino And F. Fifi, “Penerapan Support Vector Machine Untuk Analisis Sentimen Pada Layanan Ojek Online,” J. Desain Dan Anal. Teknol., Vol. 3, No. 2, Pp. 104–113, 2024, Doi: 10.58520/Jddat.V3i2.59.

V. B. Adiguna Et Al., “Analisis Sentimen Ulasan Aplikasi Shopee Menggunakan Algoritma Random Forest , Naïve Bayes , Dan Support Vector Machine Di Kota Semarang Belah Pihak Penjual Dan Pembeli Melalui Internet .( Khalaf & Diana , 2022 ) Banyak Pelaku Di Indonensia Rata-Rata Peng,” Vol. 1, Pp. 38–53, 2025.

K. L. Tan, C. P. Lee, And K. M. Lim, “A Survey Of Sentiment Analysis: Approaches, Datasets, And Future Research,” Appl. Sci., Vol. 13, No. 7, 2023, Doi: 10.3390/App13074550.

W. Zhang, X. Li, Y. Deng, L. Bing, And W. Lam, “A Survey On Aspect-Based Sentiment Analysis: Tasks, Methods, And Challenges,” Ieee Trans. Knowl. Data Eng., Vol. 35, No. 11, Pp. 11019–11038, 2023, Doi: 10.1109/Tkde.2022.3230975.

M. Irfan And E. Erizal, “Perbandingan Algoritma Naïve Bayes Dengan K-Nearest Neighbor Untuk Analisis Sentimen Aplikasi Indrive Di Playstore,” J. Media Inform. Budidarma, Vol. 8, No. 3, P. 1535, 2024, Doi: 10.30865/Mib.V8i3.7780.

G. Darmawan, S. Alam, And M. I. Sulistyo, “Analisis Sentimen Berdasarkan Ulasan Pengguna Aplikasi Mypertamina Pada Google Playstore Menggunakan Metode Naïve Bayes,” Storage – J. Ilm. Tek. Dan Ilmu Komput., Vol. 2, No. 3, Pp. 100–108, 2023.

T. Ahmed Khan, R. Sadiq, Z. Shahid, M. M. Alam, And M. Mohd Su’ud, “Sentiment Analysis Using Support Vector Machine And Random Forest,” J. Informatics Web Eng., Vol. 3, No. 1, Pp. 67–75, 2024, Doi: 10.33093/Jiwe.2024.3.1.5.

M. Rahardi, A. Aminuddin, F. F. Abdulloh, And R. A. Nugroho, “Sentiment Analysis Of Covid-19 Vaccination Using Support Vector Machine In Indonesia,” Int. J. Adv. Comput. Sci. Appl., Vol. 13, No. 6, Pp. 534–539, 2022, Doi: 10.14569/Ijacsa.2022.0130665.

A. H. Salman And W. A. M. Al-Jawher, “Performance Comparison Of Support Vector Machines, Adaboost, And Random Forest For Sentiment Text Analysis And Classification,” J. Port Sci. Res., Vol. 7, No. 3, Pp. 300–311, 2024, Doi: 10.36371/Port.2024.3.8.

N. Kewsuwun And S. Kajornkasirat, “A Sentiment Analysis Model Of Agritech Startup On Facebook Comments Using Naive Bayes Classifier,” Int. J. Electr. Comput. Eng., Vol. 12, No. 3, Pp. 2829–2838, 2022, Doi: 10.11591/Ijece.V12i3.Pp2829-2838.

P. Kurniawati, R. Yanu, And D. Witarsyah, “Sentiment Analysis Of Maxim Online Transportation App Reviews Using Support Vector Machine ( Svm ) Algorithm,” Vol. 5, No. 2, Pp. 466–475, 2023, Doi: 10.47065/Bits.V5i2.4265.

P. Subarkah, B. A. Kusuma, And P. Arsi, “Sentiment Analysis On Renewable Energy Electric Using Support Vector Machine ( Svm ) Based Optimization,” Vol. 10, No. 2, Pp. 252–260, 2024, Doi: 10.33480/Jitk.V10i2.5575.Kebijakan.

J. R. Jim, M. A. R. Talukder, P. Malakar, M. M. Kabir, K. Nur, And M. F. Mridha, “Recent Advancements And Challenges Of Nlp-Based Sentiment Analysis: A State-Of-The-Art Review,” Nat. Lang. Process. J., Vol. 6, No. January, P. 100059, 2024, Doi: 10.1016/J.Nlp.2024.100059.

J. E. Br Sinulingga And H. C. K. Sitorus, “Analisis Sentimen Opini Masyarakat Terhadap Film Horor Indonesia Menggunakan Metode Svm Dan Tf-Idf,” J. Manaj. Inform., Vol. 14, No. 1, Pp. 42–53, 2024, Doi: 10.34010/Jamika.V14i1.11946.

D. A. Kristiyanti, D. A. Putri, E. Indrayuni, A. Nurhadi, And A. H. Umam, “E-Wallet Sentiment Analysis Using Naïve Bayes And Support Vector Machine Algorithm,” J. Phys. Conf. Ser., Vol. 1641, No. 1, 2020, Doi: 10.1088/1742-6596/1641/1/012079.

C. A. Nurhaliza Agustina, R. Novita, Mustakim, And N. E. Rozanda, “The Implementation Of Tf-Idf And Word2vec On Booster Vaccine Sentiment Analysis Using Support Vector Machine Algorithm,” Procedia Comput. Sci., Vol. 234, Pp. 156–163, 2024, Doi: 10.1016/J.Procs.2024.02.162.

Downloads
Published
2025-10-25
Section
Article
License

Copyright (c) 2025 Afifani Aulida Romadhoni, Andry Rachmadany, Bayu Hari Prasojo

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How to Cite

SENTIMENT ANALYSIS OF INDRIVE APP USAGE REVIEWS ON GOOGLE PLAYSTORE USING SUPPORT VECTOR MACHINE (SVM) AND NAÏVE BAYES ALGORITHM. (2025). International Journal of Artificial Intelligence for Digital Marketing, 2(10), 102-112. https://doi.org/10.61796/ijaifd.v2i10.421

Similar Articles

11-20 of 30

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)