ANALYSIS OF THE LSTM MODEL ON THE DEMAND PATTERNS OF INDONESIAN TRADITIONAL COOKIES IN ONLINE MARKETPLACES
- Authors
-
-
Luke Farrer Azsyams
Muhammadiyah University of Sidoarjo, Indonesia -
Alshaf Pebrianggara
Muhammadiyah University of Sidoarjo, Indonesia -
Istian Kriya Almanfaluti
Muhammadiyah University of Sidoarjo, Indonesia
-
- Keywords:
- Demand prediction, LSTM, Time series forecasting, Nusantara culinary, MSMEs
- Abstract
-
Objective: This study aims to analyze the application of the Long Short-Term Memory (LSTM) model in predicting demand patterns for Indonesian culinary products in online marketplaces. Method: Using monthly sales data from January 2022 to May 2024, the model was trained and evaluated with the metrics Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and R². Results: The results showed an MSE of 899.70, an RMSE of 30.00, and an R² value of 0.09, indicating that the model has limitations in capturing variations in historical data. Nevertheless, LSTM still has potential as a forecasting tool for MSME entrepreneurs in decision-making related to inventory management, production planning, and marketing strategies. Novelty: Future research is recommended to expand the dataset, incorporate external factors such as seasonal trends and promotions, and explore hybrid approaches to improve prediction accuracy.
- References
-
H. Erlangga, T. Setiawati, F. Riadi, I. Hindarsah, and D. Riani, “Consumer Behavior in The Digital Age: A Qualitative Analysis of Online Shopping Patterns in Indonesia,” Majalah Ilmiah Bijak, vol. 21, no. 2, pp. 424–432, 2024.
R. Yustiani and R. Yunanto, “Peran marketplace sebagai alternatif bisnis di era teknologi informasi,” Komputa: Jurnal Ilmiah Komputer Dan Informatika, vol. 6, no. 2, pp. 43–48, 2017.
P. R. Handalu, “Pengaruh Atribut Produk Dan Ketidakpuasan Konsumen Terhadap Keputusan Perpindahan Merek Melalui Brand Image Sebagai Variabel Intervening Pada Sepeda Motor Merk A Ke Sepeda Motor Merk B Di Yogyakarta,” Ekonomi & Bisnis, vol. 20, no. 2, 2021.
S. Thio, M. Kristanti, and M. R. Sondak, “The role of food consumption value and attitude toward food on behavioral intention: Culinary tourist behavior in Indonesia,” Cogent Business & Management, vol. 11, no. 1, p. 2371985, 2024.
C. W. Chase, Demand-driven forecasting: a structured approach to forecasting. John Wiley & Sons, 2013.
M. N. Alim, “Pemodelan Time Series Data Saham LQ45 dengan Algoritma LSTM, RNN, dan Arima,” in PRISMA, Prosiding Seminar Nasional Matematika, vol. 6, pp. 694–701, Mar. 2023.
N. Nassibi, H. Fasihuddin, and L. Hsairi, “Demand forecasting models for food industry by utilizing machine learning approaches,” International Journal of Advanced Computer Science and Applications, vol. 14, no. 3, pp. 892–898, 2023.
L. S. Hasibuan and Y. Novialdi, “Prediksi Harga Minyak Goreng Curah dan Kemasan Menggunakan Algoritme Long Short-Term Memory (LSTM),” Jurnal Ilmu Komputer dan Agri-Informatika, vol. 9, no. 2, pp. 149–157, 2022.
A. M. A. Ausat, D. O. Suparwata, and A. Risdwiyanto, “Optimalisasi Digital Competence sebagai Strategi Adaptasi Dinamis Wirausahawan dalam Menghadapi Disrupsi Pasar di Era Digital,” Jurnal Minfo Polgan, vol. 14, no. 1, pp. 173–182, 2025.
E. Farida, V. Mandailina, A. Abdillah, and S. Syaharuddin, “Pengembangan Model Transportasi Publik Menggunakan Pendekatan Time Series dan Data Sosial Media untuk Meningkatkan Minat Masyarakat,” in Seminar Nasional Paedagoria, vol. 4, no. 1, pp. 165–176, Aug. 2024.
A. Prayudha, “Analisis Strategi Pemasaran Digital Mamam Foodies Sukabumi Melalui Akun Instagram @Mamam_Foodies,” SABER: Jurnal Teknik Informatika, Sains dan Ilmu Komunikasi, vol. 3, no. 1, pp. 22–39, 2025.
M. Manurung, “Peran Marketplace dalam Meningkatkan Akses Pemasaran UMKM di Indonesia,” AB-JOIEC: Al-Bahjah Journal of Islamic Economics, vol. 2, no. 2, pp. 74–81, 2024.
J. Schmidhuber and S. Hochreiter, “Long short-term memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.
S. Ni, Y. Peng, and Z. Liu, “Logistics demand forecast of fresh food e-commerce based on Bi-LSTM model,” Journal of Computer and Communications, vol. 10, no. 9, pp. 51–65, 2022.
G. Tamami and M. Arifin, “Penggunaan LSTM dalam Membangun Prediksi Penjualan untuk Aplikasi Laptop Lens,” JURNAL FASILKOM, vol. 14, no. 2, pp. 301–308, 2024.
I. Hartanto and F. A. Lubis, “Faktor–Faktor Yang Mempengaruhi Permintaan Pasar Terhadap Bisnis Sewa Lapangan Olahraga Di Kota Medan,” Jurnal Ekombis Review – Jurnal Ilmiah Ekonomi dan Bisnis, vol. 10, no. 2, pp. 1015–1024, 2022.
M. Lim and T. Handhayani, “Penerapan LSTM dan GRU untuk Prediksi Harga Cabai Merah di Kota Jawa Timur,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 13, no. 2, 2025.
Panda, S. K., & Mohanty, S. N. Time series forecasting and modeling of food demand supply chain based on regressors analysis. Ieee Access, 11, 42679- 42700. 2023.
Ericko, T., Lauro, M. D., Winata, A., & Handhayani, T. An Analysis And Forecasting The Foodstuffs Prices In Surabaya Traditional Market Using LSTM. Jurnal CoreIT, 10(2), 34-42. 2024.
Winata, A., Lauro, M. D., & Handhayani, T. Analysis and Prediction of Foodstuffs Prices in Tasikmalaya Using ELM and LSTM. SISTEMASI, 12(3), 874- 887. 2023
E. S. Putri and M. Sadikin, “Prediksi penjualan produk untuk mengestimasi kebutuhan bahan baku menggunakan perbandingan algoritma LSTM dan ARIMA,” Format Jurnal Ilmiah Teknik Informatika, vol. 10, no. 2, p. 162, 2021.
M. Galib, F. Faridah, and T. Thanwain, “Transformasi digital UMKM: Analisis pemasaran online dan dampaknya terhadap ekonomi lokal di Indonesia,” Journal of Economics and Regional Science, vol. 4, no. 2, pp. 115–128, 2024.
J. Kurniansyah, S. K. Gusti, F. Yanto, and M. Affandes, “Implementasi Model Long Short Term Memory (LSTM) dalam Prediksi Harga Saham,” Bulletin of Information Technology (BIT), vol. 6, no. 2, pp. 79–86, 2025.
K. Kurniawan, B. Ceasaro, and S. Sucipto, “Perbandingan Fungsi Aktivasi Untuk Meningkatkan Kinerja Model LSTM Dalam Prediksi Ketinggian Air Sungai,” JEPIN (Jurnal Edukasi dan Penelitian Informatika), vol. 10, no. 1, pp. 134–143, 2024.
M. Thejovathi and M. C. S. Rao, “Leveraging LSTM Networks for Predicting User Demand in the Fast-Moving Consumer Goods Market,” in Sentiment Analysis Unveiled. CRC Press, pp. 49–57.
K. Z. Ashar, M. R. Muttaqin, and Y. R. Ramadhan, “Linear Regression Method Predicting BMRI Stock Price Using Machine Learning,” Jutisi: Jurnal Ilmiah Teknik Informatika dan Sistem Informasi, vol. 12, no. 3, pp. 1128–1137, 2023.
P. Zhang, M. Joshi, and P. Lingras, “Use of stability and seasonality analysis for optimal inventory prediction models,” Journal of Intelligent Systems, vol. 20, no. 2, pp. 147–166, 2011.
C. Chakraborty, “Sampling in Business Research: A Profound Understanding,” 2024. A.
Pranolo et al., “Enhanced Multivariate Time Series Analysis Using LSTM: A Comparative Study of Min-Max and Z-Score Normalization Techniques,” ILKOM Jurnal Ilmiah, vol. 16, no. 2, pp. 210–220, 2024.
F. Husaini, I. Permana, M. Afdal, and F. N. Salisah, “Penerapan Algoritma Long Short-Term Memory untuk Prediksi Produksi Kelapa Sawit: Application of Long Short-Term Memory Algorithm for Palm Oil Production Prediction,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 2, pp. 366–374, 2024.
S. Sonang, S. Defit, and M. Ramadhan, “Analisis Optimasi Fungsi Pelatihan Machine Learning Neural Network dalam Peramalan Kemiskinan,” JEPIN (Jurnal Edukasi dan Penelitian Informatika), vol. 7, no. 3, 2021.
A. Primawati, I. S. Sitanggang, A. Annisa, and D. A. Astuti, “Perbandingan Kinerja LSTM dan Prophet untuk Prediksi Deret Waktu (Studi Kasus Produksi Susu Sapi Harian),” JEPIN (Jurnal Edukasi dan Penelitian Informatika), vol. 9, no. 3, pp. 428– 435, 2023.
R. S. Andromeda and N. A. S. Winarsih, “Performance Comparison of LSTM and GRU Methods in Predicting Cryptocurrency Closing Prices,” SISTEMASI, vol. 14, no. 1, pp. 366–379, 2025.
L. Sinaga, “Faktor–Faktor Yang Mempengaruhi Permintaan Cabai Merah Di Jawa Timur,” Doctoral dissertation, Universitas Brawijaya, 2017.
S. Herawati and N. Prastiti, “Implementasi Metode Long Short Term Memory untuk Peramalan Pertumbuhan Jumlah UMKM,” Jurnal Simantec, vol. 12, no. 2, pp. 63–70, 2024.
H. T. A. Simanjuntak, A. Lumbanraja, and G. Samosir, “Prediksi Single-Step dan Multi-Step Data Cuaca Menggunakan Model Long Short-Term Memory dan SARIMA,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 12, no. 2, pp. 399– 410, 2025.
Z. Chen, “Machine Learning for Smart Cities: LSTM Model-Based Taxi OD Demand Forecasting in New York,” 2025.
- Downloads
- Published
- 2025-10-25
- Section
- Article
- Categories
- License
-
Copyright (c) 2025 Luke Farrer Azsyams, Alshaf Pebrianggara, Istian Kriya Almanfaluti

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Similar Articles
- Hojiakbar Muminov, THE FUTURE OF AI IN DIGITAL MARKETING TRENDS AND PREDICTIONS FOR 2025 , International Journal of Artificial Intelligence for Digital Marketing: Vol. 1 No. 4 (2024): International Journal of Artificial Intelligence for Digital Marketing
- Mochammad Rakha Abimanyu, Istian Kriya Almanfaluti, Bayu Hari Prasojo, THE IMPACT OF ARTIFICIAL INTELLIGENCE (CHATGPT) ON PRODUCT AND SERVICE INNOVATION IN MICRO, SMALL, AND MEDIUM ENTERPRISES (MSMES) AMONG GENERATION Z ENTREPRENEURS , International Journal of Artificial Intelligence for Digital Marketing: Vol. 2 No. 10 (2025): International Journal of Artificial Intelligence for Digital Marketing
- Shoh-Jаkhon Khаmdаmov, Amirbek Azizbekovich Akhrorov , REAL ESTATE MARKET DYNAMICS IN UZBEKISTAN: ASSESSING FACTORS INFLUENCING THE REAL ESTATE MARKET INCLUDING URBAN DEVELOPMENT POLICIES, INVESTMENT TRENDS, AND ECONOMIC GROWTH , International Journal of Artificial Intelligence for Digital Marketing: Vol. 1 No. 2 (2024): International Journal of Artificial Intelligence for Digital Marketing
- Saitaxmadov Maqsud, THE EFFECTIVENESS OF SIMULATORS FOR UNMANNED AERIAL VEHICLES , International Journal of Artificial Intelligence for Digital Marketing: Vol. 1 No. 2 (2024): International Journal of Artificial Intelligence for Digital Marketing
- Nurjanah Fitri Hastuti, Ayun Maduwinarti, Ni Made Ida Pratiwi, THE INFLUENCE OF SOCIAL MEDIA PROMOTION AND SERVICE QUALITY REGARDING PURCHASING DECISIONS AT FITTARA COFFEE SIDOARJO , International Journal of Artificial Intelligence for Digital Marketing: Vol. 1 No. 2 (2024): International Journal of Artificial Intelligence for Digital Marketing
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Fandy Al Ubaidah, Istian Kriya Almanfaluti, Mochamad Rizal Yulianto, Alshaf Pebrianggara, ARTIFICIAL INTELLIGENCE (AI), DIGITAL MARKETING AND POPULARITY ON PURCHASE INTENTIONS FOR VIRTUAL CONCERTS IN KOREAN GIRLBAND AESPA , International Journal of Artificial Intelligence for Digital Marketing: Vol. 2 No. 10 (2025): International Journal of Artificial Intelligence for Digital Marketing
- Mohammad Rafli Septian, Alshaf Pebrianggara, Andry Rachmadhany, Bayu Hari Prasojo, INNOVATION RECOGNITION, INDIVIDUAL PROGRESS AND IMPLICATIONS OF BEHAVIORAL CONTROL FOR ONLINE PURCHASE CHOICES , International Journal of Artificial Intelligence for Digital Marketing: Vol. 2 No. 10 (2025): International Journal of Artificial Intelligence for Digital Marketing
- Mochammad Rakha Abimanyu, Istian Kriya Almanfaluti, Bayu Hari Prasojo, THE IMPACT OF ARTIFICIAL INTELLIGENCE (CHATGPT) ON PRODUCT AND SERVICE INNOVATION IN MICRO, SMALL, AND MEDIUM ENTERPRISES (MSMES) AMONG GENERATION Z ENTREPRENEURS , International Journal of Artificial Intelligence for Digital Marketing: Vol. 2 No. 10 (2025): International Journal of Artificial Intelligence for Digital Marketing
- Ramadhani Dwi Priyanto, Alshaf Pebrianggara, Mochamad Rizal Yulianto, THE INFLUENCE OF TIKTOK SHOP’S PREDATORY PRICING ON CONSUMER ATTRACTION AND PURCHASING DECISIONS OF FASHION PRODUCTS AMONG GENERATION Z , International Journal of Artificial Intelligence for Digital Marketing: Vol. 2 No. 10 (2025): International Journal of Artificial Intelligence for Digital Marketing













